Skip to contents

All functions

case_medium_zoom1
Medium Challenge Changepoint Timeseries DataCube
case_medium_zoom1_details
Medium Challenge Changepoint Timeseries DataCube
check_x()
Check 1D timeseries
tj_cell_neighbours()
Raster Cell Neighbourhoods
tj_cell_neighbours_old()
Raster Cell Neighbourhoods
tj_cfg_m0.3()
Compile paramaters for m0.3
tj_cfg_m0.6() tj_cfg_m0.6()
Compile paramaters for m0.6
tj_contextual_mann_kendall()
Contextual Mann-Kendall Trend Test
tj_divide_bbox()
Divide bounding box into subsets, return polygons
tj_divide_raster()
Tile stars raster
tj_fast_sample()
Sample Element Fast
tj_fit_m0.3()
Simultaneous linear regression with correlated changepoint estimation
tj_fit_m0.3_dac()
Wrapper to fit model 3 to a mosaic, old version
tj_fit_m0.3s()
Fit m0.3 alternative parametrisation
tj_fit_m0.5()
Wrapper to fit model 3 to a mosaic
tj_fit_m0.6()
Simultaneous linear regression with correlated changepoint estimation
tj_fit_m0.6_v1()
Simultaneous linear regression with correlated changepoint estimation
tj_fit_m0.6s() tj_fit_m0.6s()
Fit m0.6 alternative parametrisation
tj_fit_m0.x()
Wrapper to fit models of the 0.x-family to a mosaic
tj_i2rc()
Cell to Row-Column
tj_mann_kendall()
Mann-Kendall Trend Test
tj_predict_m0.3()
Prediction the series per cell
tj_rc2i()
Row-Col to Cell
tj_stars_to_data()
Process input stars to legacy data format
tj_stars_to_polygon_union()
Raster to Polygons Take stars-raster and create a polygons of those pixels with >0 values using st_union
tj_stitcher_m0.5_v1.1()
Stitch a mosaic model fit
tj_stitcher_m0.x()
Stitch a mosaic model fit
tj_summarise_m0.3()
Summarise fit of M0.3 as a tibble
tj_summarise_m0.5()
Summarise fit of M0.5 stiched results
tj_trace_m0.3()
Get the history
tj_trace_m0.3_dac()
Retrieve trace for particular cell from list of mosaic fits
tj_trace_m0.5()
Retrieve trace for particular cell from list of mosaic fits
tjdc tjdc-package
Trends and Jumps in Thin DataCubes