Inhomogeneous anisotropic pcf function, non-spherical version
Source:R/pcf_anin_fry.R
pcf_anin_fry.Rd
Estimate the anisotropic pcf function for second order reweighted ("inhomogeneous") pattern.
Usage
pcf_anin_fry(
x,
u,
r,
lambda = NULL,
lambda_h,
bw,
stoyan = 0.35,
renormalise = TRUE,
border = 1,
...
)
Arguments
- x
pp, list with $x~coordinates $bbox~bounding box
- u
unit vector(s) of direction, as row vectors. Default: x and y axis.
- r
radius vector at which to evaluate the function
- lambda
optional vector of intensity estimates at points
- lambda_h
if lambda missing, use this bandwidth in a kernel estimate of lambda(x)
- bw
smoothing bandwidth for multi-dimensional epanechnikov kernel.
- stoyan
If r_h not given, use bw=stoyan/lambda^(1/dim). Same as 'stoyan' in spatstat's pcf.
- renormalise
See details.
- border
Use translation correction? Default=1, yes. Only for cuboidal windows.
- ...
passed on to e.g. intensity_at_points
Details
Computes a second order reweighted version of the anisotropic pcf. Essentially the estimate of intensity of pairwise vectors at locations outer(r, u). We will use antipodal estimation, so directions should not include antipodal pairs.
Lambda(x) at points can be given, or else it will be estimated using Epanechnikov kernel smoothing. See
If 'renormalise=TRUE', we normalise the lambda estimate so that sum(1/lambda(x))=|W|. This corresponds in spatstat
's Kinhom
to setting 'normpower=2'.
See also
pcf_anin_sector
, pcf_anin_cylinder