Inhomogeneous anisotropic pcf function, cylinder version
Source:R/pcf_anin_cylinder.R
      pcf_anin_cylinder.RdEstimate a cylinder-pcf function for second order reweighted ("inhomogeneous") pattern.
Usage
pcf_anin_cylinder(
  x,
  u,
  epsilon,
  r,
  lambda = NULL,
  lambda_h,
  r_h,
  stoyan = 0.15,
  renormalise = TRUE,
  border = 1,
  aspect = 1/3,
  ...
)Arguments
- x
- pp, list with $x~coordinates $bbox~bounding box 
- u
- unit vector(s) of direction, as row vectors. Default: x and y axis. 
- epsilon
- The cylinder half-width 
- r
- radius vector at which to evaluate the function 
- lambda
- optional vector of intensity estimates at points 
- lambda_h
- if lambda missing, use this bandwidth in a kernel estimate of lambda(x) 
- r_h
- smoothing for range dimension, epanechnikov kernel 
- stoyan
- If r_h not given, use r_h=stoyan/lambda^(1/dim). Same as 'stoyan' in spatstat's pcf. 
- renormalise
- See details. 
- border
- Use translation correction? Default=1, yes. Only for cuboidal windows. 
- aspect
- If given, instead of using a fixed halfwidth (epsilon) take the halfwidth to be r/(2*aspect). Default : 1/3 
- ...
- passed on to e.g. intensity_at_points 
Details
Computes a second order reweighted version of the cylinder-pcf, defined as the function to integrate in range over [0,R] to get the cylinder-K(R) function.
Lambda(x) at points can be given, or else it will be estimated using Epanechnikov kernel smoothing. See
If 'renormalise=TRUE', we normalise the lambda estimate so that sum(1/lambda(x))=|W|. This corresponds in spatstat's Kinhom to setting 'normpower=2'.