Inhomogeneous anisotropic pcf function, cylinder version
Source:R/pcf_anin_cylinder.R
pcf_anin_cylinder.Rd
Estimate a cylinder-pcf function for second order reweighted ("inhomogeneous") pattern.
Usage
pcf_anin_cylinder(
x,
u,
epsilon,
r,
lambda = NULL,
lambda_h,
r_h,
stoyan = 0.15,
renormalise = TRUE,
border = 1,
aspect = 1/3,
...
)
Arguments
- x
pp, list with $x~coordinates $bbox~bounding box
- u
unit vector(s) of direction, as row vectors. Default: x and y axis.
- epsilon
The cylinder half-width
- r
radius vector at which to evaluate the function
- lambda
optional vector of intensity estimates at points
- lambda_h
if lambda missing, use this bandwidth in a kernel estimate of lambda(x)
- r_h
smoothing for range dimension, epanechnikov kernel
- stoyan
If r_h not given, use r_h=stoyan/lambda^(1/dim). Same as 'stoyan' in spatstat's pcf.
- renormalise
See details.
- border
Use translation correction? Default=1, yes. Only for cuboidal windows.
- aspect
If given, instead of using a fixed halfwidth (epsilon) take the halfwidth to be r/(2*aspect). Default : 1/3
- ...
passed on to e.g. intensity_at_points
Details
Computes a second order reweighted version of the cylinder-pcf, defined as the function to integrate in range over [0,R] to get the cylinder-K(R) function.
Lambda(x) at points can be given, or else it will be estimated using Epanechnikov kernel smoothing. See
If 'renormalise=TRUE', we normalise the lambda estimate so that sum(1/lambda(x))=|W|. This corresponds in spatstat
's Kinhom
to setting 'normpower=2'.