Skip to contents

Estimate a sector-mark correlation function for second order reweighted "inhomogeneous" pattern.

Usage

markcorr_anin(
  x,
  marks,
  u,
  epsilon,
  r,
  lambda = NULL,
  lambda_h,
  f = function(a, b) a * b,
  r_h,
  stoyan = 0.15,
  renormalise = TRUE,
  bootsize = 1e+05,
  normaliser = NULL,
  border = 1,
  divisor = "d",
  ...
)

Arguments

x

pp, list with $x~coordinates $bbox~bounding box

marks

if x is not marked (x$marks is empty), use these marks

u

unit vector(s) of direction, as row vectors. Default: x and y axis.

epsilon

Central half angle for the directed sector/cone (total angle of the rotation cone is 2*epsilon)

r

radius vector at which to evaluate

lambda

optional vector of intensity estimates at points

lambda_h

if lambda missing, use this bandwidth in a kernel estimate of lambda(x)

f

test function of the form function(m1, m2) ..., returning a vector of length(m1). default: m1*m2

r_h

smoothing for range dimension, epanechnikov kernel

stoyan

If r_h not given, use r_h=stoyan/lambda^(1/dim). Same as 'stoyan' in spatstat's pcf.

renormalise

See details.

bootsize

bootstrap size for estimating the normaliser if not given.

normaliser

normalising constant under independent marking. If NULL, estimated with bootstrap.

border

Use translation correction? Default=1, yes. Only for cuboidal windows.

divisor

either "d" or "r". Divide by dist(i,j) ("d") instead of r ("r")?

...

passed on to e.g. intensity_at_points

Value

Returns a dataframe.

Details

Computes a second order reweighted version of the mark correlation function.

lambda(x) at points can be given, or else it will be estimated using Epanechnikov kernel smoothing. See

If 'renormalise=TRUE', we normalise the lambda estimate so that sum(1/lambda(x))=|W|. This corresponds in spatstat's Kinhom to setting 'normpower=2'.